Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

Факультет машиностроительных и химиче-

ских технологий

Саблин П.А.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Материалы для 3D-печати»

Направление подготовки	22.03.01 Материаловедение и технологии материалов
Направленность (профиль) образовательной программы	Материаловедение в машиностроении
Квалификация выпускника	Бакалавр .
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.	
3	6	5	

Вид промежуточной аттеста- ции	Обеспечивающее подразделение
Экзамен	Кафедра «Материаловедение и технология новых матери- алов»

Комсомольск-на-Амуре 2021

Комсомольск-на-Амуре 2021

Разработчик рабочей программы:

Инженер

Самар Е.В

СОГЛАСОВАНО:

Заведующий кафедрой Кафедра «Материаловедение и технология новых материалов» Башков О.В.

1 Введение

Рабочая программа и фонд оценочных средств дисциплины «Материалы для 3D-печати» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Минобрнауки Российской Федерации ФГОС ВО, утвержденный приказом Минобрнауки России от 02.06.2020 № 701, и основной профессиональной образовательной программы подготовки «Материаловедение в машиностроении» по направлению подготовки «22.03.01 Материаловедение и технологии материалов».

Практическая подготовка реализуется на основе:

Профессиональный стандарт 40.136 «СПЕЦИАЛИСТ В ОБЛАСТИ РАЗРАБОТКИ, СОПРОВОЖДЕНИЯ И ИНТЕГРАЦИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ В ОБЛАСТИ МАТЕРИАЛОВЕДЕНИЯ ТЕХНОЛОГИИ МАТЕРИАЛОВ».

Обобщенная трудовая функция: А Разработка, сопровождение и интеграция типовых технологических процессов в области материаловедения и технологии материалов.

H3-5 Металлические и неметаллические конструкционные и инструментальные материалы, их свойства, типовые способы объемного и поверхностного упрочнения, НУ-2 Выбирать конструкционные и инструментальные материалы, в том числе с использованием информационных технологий.

Задачи дисци-

- знать основные способы получения материалов для аддитивных технологий;
- знать основные свойства и характеристики металлических и неметаллических конструкционных и инструемнтальных материалов, используемых в аддитивном производстве;
- уметь проводить выбор материалов и аддитивных технологий изготовления изделий с учетом требований к выпускаемым изделиям.

Основные разделы / темы дисщиплины

Лекции: Итория развития аддитивных технологий. Основные термины и классификация, Обзор материалов для аддитивных технологий. Механические и физические свойства материалов, Использование неметаллических материалов в аддитивном производстве, Использование металлических материалов в аддитивном производстве, Технологии получения материалов для аддитивных технологий, Физические и химимческие процессы при изготовлении материалов для аддитивных технологий, Методы исследования эксплуатационных свойств материалов для аддитивных технологий, Исследование структурного состояния материалов, полученных методом аддитивных технологий, Физические и химические процессы при изготовлении материалов для аддитивных технологий

Лабораторные работы: Построение 3Д модели изделия для последующей печати в среде автокад, 3D печать изделия с использованием метода послойного моделирования расплавленной нитью, Исследование механических свойств напечатанного 3Д изделия, Исследование твердости изготовленных образцов

Практические работы: 1. Исследование структуры металлических образцов методами оптической и растровой электронной микроскопии, 2. Расчет эффективных условий получения порошков заданного состава в шаровых мельницах, 3. Проведение дисперсионного анализа материала, полученного методом аддитивных технологий, 4. Исследование циклической долговечности материалов, полученных методом AT, 5.

Определение химического состава материалов, полученных методом аддитивных технологий Экзамен: Экзамен

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Материалы для 3D-печати» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достиже- ния	Планируемые результаты обучения по дисциплине
	Профессиональные	
ПК-1 Способен осуществлять рациональный выбор материалов и оптимизировать их расходование на основе анализа заданных условий эксплуатации материалов, оценки их надежности, экономичности и экологических последствий применения	ПК-1.1 Знает виды и классификацию свойств материалов ПК-1.2 Умеет осуществлять рациональный выбор материалов, оптимизировать их расходование на основе анализа заданных условий эксплуатации материалов ПК-1.3 Владеет навыками оценки надежности материалов, экономичности и экологических последствий применения	Знать состав, структуру и свойства металлических и неметаллических конструкционных и инструментальных материалов, применяемых в аддитивных технологиях; знать технологию молучения материалов для создания изделий методом аддитивных технологий; знать физические и и химические процессы, протекающие при производстве материалов для аддитивных технологий; проводить выбор материалов и аддитивных технологий для получения изделий с требуемыми техническими характеристиками.

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Материалы для 3D-печати» изучается на 3 курсе, 6 семестре.

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к базовой части.

Для освоения дисциплины необходимы знания, умения, навыки и / или опыт практической деятельности, сформированные в процессе изучения дисциплин / практик: «Машиностроительные материалы».

Знания, умения и навыки, сформированные при изучении дисциплины «Материалы для 3D-печати», будут востребованы при изучении последующих дисциплин: «Прогрессивные материалы и технологии», «Методология выбора материалов и технологических процессов», «Б1.В.ДВ.03.01 Композиционные материалы», «Б1.В.ДВ.03.02 Конструкционные материалы», «Производственная практика (технологическая (проектнотехнологическая) практика), 8 семестр», «Производственная практика (преддипломная практика)».

Дисциплина «Материалы для 3D-печати» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения самостоятельных работ, лабораторных работ, практических занятий.

Дисциплина «Материалы для 3D-печати» в рамках воспитательной работы направлена на формирование у обучающихся активной гражданской позиции, уважения к правам и свободам человека, знания правовых основ и законов, воспитание чувства ответственности или умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения или творчески развитой личности, системы осознанных знаний, ответственности за выполнение учебно-производственных заданий и т.д.

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 5 з.е., 180 акад. час.

Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академических часов
Общая трудоемкость дисциплины	180
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	48
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации педагогическими работниками), в том числе в форме практической подготовки:	16
занятия семинарского типа (семинары, практические занятия, практикумы, лабораторные работы, коллоквиумы и иные аналогичные занятия), в том числе в форме практической подготовки:	32
Самостоятельная работа обучающихся и контактная работа, включающая групповые консультации, индивидуальную работу обучающихся с преподавателями (в том числе индивидуальные консультации); взаимодействие в электронной информационно-образовательной среде вуза	97
Промежуточная аттестация обучающихся – Экзамен	35

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала Виды учебной работы, включая самостоятельную боту обучающихся и трудоемкость (в часах)		-		
	Контактная работа преподавателя с обучающимися		CPC	
	Лекции	Семинарские (практические за- нятия)	Лабораторные занятия	
	Лек	ции		
Итория развития аддитивных технологий. Основные термины и классификация	2			8
Обзор материалов для аддитивных технологий. Механические и физические свойства материалов	2			8
Использование неметалличе- ских материалов в аддитивном производстве	2			8
Использование металлических материалов в аддитивном про- изводстве	2			8
Технологии получения материа- лов для аддитивных технологий	2			8
Физические и химимческие процессы при изготовлении материалов для аддитивных технологий	2			
Методы исследования эксплуатационных свойств материалов для аддитивных технологий	2			8
Исследование структурного со- стояния материалов, получен- ных методом аддитивных техно- логий	2			8
Физические и химические процессы при изготовлении материалов для аддитивных технологий				8
Лабораторные работы				
Построение 3Д модели изделия для последующей печати в среде			4	8

автокад				
3D печать изделия с использованием метода послойного моделирования расплавленной нитью			2	8
Исследование механических свойств напечатанного 3Д изделия - изучение госта по растяжению материалов - изучение диаграммы растяжения материала - испытание образцов в зависмости от плотнсоти заполнения			6	8
Исследование твердости изготовленных образцов - изучение методов определения твердости; - иследование твердости материалов в зависимости от плотности заполнения			4	8
П	рактичесі	кие работы		
1. Исследование структуры металлических образцов методами оптической и растровой электронной микроскопии		4		
2. Расчет эффективных условий получения порошков заданного состава в шаровых мельницах		2		
3. Проведение дисперсионного анализа материала, полученного методом аддитивных технологий		4		
4. Исследование циклической долговечности материалов, полученных методом АТ		4		
5. Определение химического состава материалов, полученных методом аддитивных технологий		2		
Экзамен				
ИТОГО по дисциплине	16	16	16	96

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	64
Выполнение отчета и подготовка к защите лаб.раб.	32

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации представлен в Приложении 1.

Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю), практике хранится на кафедре-разработчике в бумажном и электронном виде.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1. Технологии аддитивного производства Я. Гибсон, Д. Розен, Б. Стакер, *Перевод. с англ. под ред. И.В. Шишковского.* Изд-во Техносфера, Москва, 2016. 656 с. ISBN: 978-5-94836-447-6
- 2. Зленко М.А. Аддитивные технологии в машиностроении / М.В. Нагайцев, В.М. Довбыш // пособие для инженеров. М. ГНЦ РФ ФГУП «НАМИ» 2015. 220 с.
- 3. Зленко М.А., Попопвич А.А., Мутылина И.Н. Аддитивные технологии в машиностроении. Учебное пособие. Санкт-Петербург, СПбГУ, 2013. 221 с.
- 4. Каменев, С.В. Технологии аддитивного производства [Электронный ресурс] : учебное пособие / С.В. Каменев, К.С. Романенко Оренбург: Оренбургский государственный университет, 2017 145 с.

8.2 Дополнительная литература

- 1. Валетов В.А. Аддитивные технологии (состояние и перспективы). Учебное пособие. СПб.: Университет ИТМО, 2015, 63 с.
- 2. Ляпков А.А. Полимерные аддитивные технологии : учебное пособие / А.а. Ляпков; Томский политехничский университет. Томск : изд-во Томского политехнического университета, 2016. 114c.
- 8.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине
 - Электронно-библиотечная система ZNANIUM.COM.
 - Электронно-библиотечная система IPRbooks.
 - Электронно-библиотечная система eLIBRARY.RU.
 - Электронные информационные ресурсы издательства Springer.

- Политематическая реферативно-библиографическая и наукометрическая база данных Web of Science.
- База данных международных индексов научного цитирования Scopus.
- 8.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)
 - 1. Электронные информационные ресурсы издательства Springer *Springer Journals* (https://link.springer.com)
 - 2. Политематическая реферативно-библиографическая и наукометрическая база данных Web of Science (http://apps.webofknowledge.com)
 - 3. Информационно-справочная система «Консультант плюс»
 - 4. База данных международных индексов научного цитирования Scopus (https://www.scopus.com)
 - 5. Springer Materials (https://materials.springer.com) электронная платформа для доступа к регулярно обновляемым базам данных по материаловедению издательства Springer
 - 6. *Nano Database* (https://nano.nature.com) база статических и динамических справочных изданий по наноматериалам и наноустройствам.
- 8.5 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

Таблица 5 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
OpenOffice	Свободная лицензия, условия использования по ссылке: https://www.openoffice.org/license.html
AutoCad	

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традицион-

ные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

9.4 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

1. Изучение учебной дисциплины должно вестись систематически.

- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

10.1 Учебно-лабораторное оборудование

Таблица 6 – Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
133-2	Лаборатория Механиче- ских испытаний	Испытательная машина 3382 INSTRON, Комплекс твердомеров для измерения твердости материалов по методу Роквелла и Бринелля
208-2	Лаборатория Микрструк- турных исследований	Металлографический микроскоп Nikon MA200, Микротвердомер HMV-2, Принтер для 3Д печати

10.2 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Практические занятия.

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

Лабораторные занятия.

Для лабораторных занятий используются аудитории №208-2, № 113-2, оснащенная оборудованием, указанным в табл. 6

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- читальный зал НТБ КнАГУ;
- компьютерные классы (ауд. 204 корпус № 2).

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Материалы для 3D-печати»

Направление подготовки	22.03.01 Материаловедение и технологии материалов
Направленность (профиль) образовательной программы	Материаловедение в машиностроении
Квалификация выпускника	Бакалавр
Год начала подготовки (по учебному плану)	2021
Форма обучения	Очная форма
Технология обучения	Традиционная

Курс	Семестр	Трудоемкость, з.е.
3	6	5

Вид промежуточной аттеста- ции	Обеспечивающее подразделение
Экзамен	Кафедра «Материаловедение и технология новых материалов»

1 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование компетенции	Индикаторы достиже- ния	Планируемые результаты обучения по дисциплине			
Профессиональные					
ПК-1 Способен осуществ- лять рациональный выбор материалов и оптимизиро- вать их расходование на ос- нове анализа заданных условий эксплуатации мате- риалов, оценки их надеж- ности, экономичности и экологических последствий применения	ПК-1.1 Знает виды и классификацию свойств материалов ПК-1.2 Умеет осуществлять рациональный выбор материалов, оптимизировать их расходование на основе анализа заданных условий эксплуатации материалов ПК-1.3 Владеет навыками оценки надежности материалов, экономичности и экологических последствий применения	Знать состав, структуру и свойства металлических и неметаллических конструкционных и инструментальных материалов, применяемых в аддитивных технологиях; знать технологию молучения материалов для создания изделий методом аддитивных технологий; знать физические и и химические процессы, протекающие при производстве материалов для аддитивных технологий; проводить выбор материалов и аддитивных технологий для получения изделий с требуемыми техническими характеристиками.			

Таблица 2 – Паспорт фонда оценочных средств

Контролируемые разделы	Формируемая	Наименование оце-	Показатели
(темы) дисциплины	компетенция	ночного средства	оценки

2 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующие процесс формирования компетенций

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 3).

Таблица 3 – Технологическая карта

Наименование оценочного средства	Сроки вы- полнения	Шкала оце- нивания	Критерии оценивания	
6 семестр Промежуточная аттестация в форме «Экзамен»				
Текущий кон- троль:		0 баллов		

Экзамен	22 неделя	5	0 – 64 % от максимально возможной суммы баллов — «неудовлетворительно» (недостаточный уровень для аттестации по дисциплине); 65 – 74 % от максимально возможной суммы баллов — «удовлетворительно» (пороговый (минимальный) уровень); 75 – 84 % от максимально возможной суммы баллов — «хорошо» (средний уровень); 85 – 100 % от максимально возможной суммы баллов — «отлично» (высокий (максимальный) уровень)
Экзамен:		5 баллов	
итого:		5 баллов	

Критерии оценки результатов обучения по дисциплине:

- 0-64~% от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)